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SUMMARY 

An analytical model was developed for predicting the onset of supersonic stall bend- 
ing flutter in axial-flow compressors. The analysis i s  based on a modified two- 
dimensional,  compressible,  unsteady  actuator  disk  theory.  It is  applied to a rotor 
blade row by considering a cascade of airfoils whose geometry and dynamic response 
coincide with those of a rotor blade  element at 85 percent of the  span height (measured 
from  the hub). The rotor ble.des a r e  assumed to be unshrouded (i-e.,  free standing) and 
to vibrate in their  first  flexural mode. The effects of shock  waves  and flow separation 
a re  included in the model  through  quasi-steady,  empirical, rotor total-pressure-loss 
and deviation-angle correlations. 

The  actuator  disk model predicts  the unsteady aerodynamic  force  acting on the  cas- 
cade blading as a  function of the  steady flow field  entering  the  cascade and the geometry 
and dynamic response of the  cascade.  Calculations show that  the  present model pre- 
dicts the existence of a bending flutter mode at  supersonic  inlet Mach numbers.  This 
flutter mode is suppressed by increasing  the  reduced  frequency of the  system or by re- 
ducing the  steady-state  aerodynamic  loading on the  cascade.  The  validity of the model 
for  predicting  flutter is demonstrated by correlating the measured  flutter  boundaries of 
several high-speed  fan stagos with their predicted  boundaries. This correlation uses a 
level of damping for the  blade row (i. e., the  log  decrement of the rotor system)  that i s  
estimated  from  the  experimental  flutter  data.  The  predicted  flutter  boundaries a r e  in 
good agreement with  the measured  boundaries. 

These  results show that  the model can be used to estimate  the  relative  stability be- 
tween operating  points  of a given rotor  system.  If, in addition,  a  measure of the mech- 
anical damping of the rotor system is available,  the model can  also be used  to  estimate 
the  absolute  stability at  an  operating  point. 

INTRODUCTION 

Flutter  can result in  costly (both in  time  and money) overruns in turbofan-engine 
development programs. Solving the problem of flutter (at the engine  development  stage) 
may well mean major engine redesign and retesting. For this reason, engine  manufac- 
turers and  government  agencies are currently  supporting  numerous  research  programs 
in an  attempt to develop  flutter  prediction  systems that can be used to  design  flutter-free 
engines.  To  date,  these research  programs have  identified  five  regions (fig. 1) of the 



compressor  performance map  where  flutter is generally  encountered. 
Of the  five  regions shown in figure 1, the  supersonic  low-backpressure  flutter re- 

gion has been  the most thoroughly investigated  analytically (refs. 1 to 3). In general, 
these  analyses have considered  the flow field  through  a  cascade of two-dimensional air- 
foils undergoing simple  harmonic pitching or  plunging. The gas stream was  assumed 
to  be  an  inviscid, nonconducting, perfect gas. Shock waves  that  originated in the flow 
field  were  assumed  to  be weak so that  supersonic  small-disturbance  theory could be 
used. Although these  assumptions  appear to oversimplify  the flow conditions encoun- 
tered by a rotor  at  the  onset of flutter,  the  flutter  boundaries  predicted by these analy- 
ses  correlate well with experimental  data. 

A recent  analysis  (ref. 4) has  attempted  to apply the  supersonic,  linearized,  small- 
disturbance  theory  to  higher  backpressure  operating conditions (i. e . ,  region IV of 
fig. 1) by including  a  finite-strength shock wave within the  cascade  passage.  Results 
from this analysis show that  the  unsteady motion of the  shock wave tends  to induce bend- 
ing  flutter. The existence of this flutter mode is documented in  reference 5.  

The remaining  operating region  where supersonic  flutter  occurs (region V of fig. 1) 
lies close to the stall line of a stage. Analyses of this region have not appeared  in  the 
open literature.  Literature on this  subject (e. g., refs. 5 to 7) generally  presents ex- 
perimental  data to document the extent of the flutter  region.  These data  provide  a very 
limited  base  from which an  empirical  correlation  can  be  derived  for  predicting  the  onset 
of this  flutter mode. 

The objective of the  present  analysis is to develop a model for  predicting  the  onset 
of supersonic stall flutter. The calculated  flutter  boundaries of four high-speed fan 
stages  that have experienced this type of flutter  are  compared with their  measured 
boundaries to  validate  the  analysis. 

BACKGROUND 

Supersonic stall  flutter is generally  encountered by rotors that do not have part- 
span  dampers or  tip  shrouds.  Experimental data reveal  that  the  flutter mode is gener- 
ally  the  first flexural mode at  a  reduced  frequency (based on tip  relative velocity and 
tip  semichord) of about 0.2.  The vibratory  pattern  around  the rotor tends to be very 
regular: All blades  vibrate  at  the  same  frequency but are shifted in phase by a  positive 
interblade  phase  angle of about 20° to 50' (ref. 7). This  positive  phase shift implies 
that  the  vibratory  pattern is traveling  around the wheel in  the direction of rotation (i. e., 
a forward-traveling  wave). 

A further  characteristic of fans  operating  in flow regions  associated with stall flut- 
ter is shown by the  steady-state  pressure  distribution  in  figure 2. This pressure dis- 
tribution  was  produced  from  measurements  taken  across a rotor tip while the rotor was 
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operating  near  the  flutter boundary.  This figure  clearly  indicates a detached,  leading- 
edge bow shock wave impinging on the  suction  surface of the  adjacent  blade. The large 
extent of the compression  region  at the base of the  shock wave seems to suggest a  sepa- 
rated flow region that would increase  in  size  as  the  fan  operating point moved toward 
the  supersonic stall bending flutter boundary. This  separated flow  would be  accompa- 
nied by a decrease  in shock strength. 

The present  analysis develops a flutter model for  the highly complicated flow field 
illustrated  in  figure 2 by using two-dimensional actuator disk theory. The effects of 
flow separation a re  included in  the model through rotor-loss and deviation-angle corre- 
lations. For low-speed flows, actuator  disk  flutter  models have  been  able to predict 
the  onset of a  single-degree-of-freedom bending flutter mode (e. g., refs. 8 and 9). The 
success of the  models at low speeds  suggests  that a compressible  actuator  disk model 
might be capable of predicting  the  onset of bending flutter  at  supersonic  speeds. This 
hypothesis has been confirmed by a  number of calculations.  These  calculations, how- 
ever, did require  as input the  interblade  phase angle at  the  onset of flutter. So that  this 
requirement could be avoided,  the actuator disk model was modified to allow for  moder- 
ate values of interblade  phase  angle.  This modification results in a flutter model that 
can be developed into  a flutter  prediction  system. The  validity of this  flutter  prediction 
system is demonstrated by comparing  the  predicted  flutter  boundaries of four high- 
speed fan stages with their  measured  boundaries. 

FORMULATION 

The present  analysis  for stall bending flutter of an  isolated  rotor  models  the  rotor 
as  a two-dimensional cascade of airfoils. The cascade is defined by the  blade-element 
geometry on a cylindrical  surface  at a distance R from  the  axis of rotation. The flow 
field  in  the  cascade plane is assumed  to be two dimensional,  compressible, and time 
dependent. Viscous forces  are  considered only within the blade  channel. The unsteady 
flow variables  associated with the  rotor  vibratory motion are  assumed  to  be  smaller 
than their  steady-state  counterparts.  These  variables at  an  instant in time a re  required 
to be periodic  around  the wheel at  a period equal to a fractional  part of the circumferen- 
tial  distance d = 27rR. 

The motion of the  airfoils  in  the  cascade plane is restricted  to  simple  harmonic 
plunging and edgewise  motion at  a cyclic frequency o (fig. 3). In addition the motion of 
each  airfoil at  an instant  in  time is assumed  to  be  shifted  from  that of its neighbor by an 
interblade  phase angle of u = 2 n / N ,  where  n is an  integer and N is the  number of 
blades  in  the rotor. In the  present  analysis  the reduced-frequency parameter kb and 
the  interblade  phase angle are assumed to  be small. Reduced frequency kb = ob/Tjm, 
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The governing  equations for the flow field  upstream and downstream of the  cascade 
are written  with  respect to the  relative  coordinate  system. The variables  in  these 
equations are nondimensionalized by the  parameter G-m, the  circumferential  distance 
around the wheel d,  the inlet steady-state  fluid  density F-, and the  inlet  steady-state 
fluid temperature F-m. In  addition the  subscripts (m, -m) signify  upstream and  down- 
stream flow variables. (The symbols used  in  this  report are defined in appendix A.)  

The continuity equation for  the  upstream and  downstream flow fields is 

where p,  Ui, t, and 5 are  the nondimensional density,  velocity  components, and time 
spacial  coordinates,  respectively. (See fig. 3 for definition of coordinate  system.) In 
addition the  use of repeated  indices denotes  summation with respect  to the repeated in- 
dex. The momentum equations for  the flow fields are  

where P*m is the nondimensional pressure. The remaining  field equations a re  the 
energy equation for  an inviscid, nonconducting gas 

as*m as*m - + Ui,*m - = 0 
at axi 

and the equation of state 

(The entropy  was  nondimensionalized with respect to T-wfi-w 2 .) The variables  appear- 
ing in equations (3) and (4) are the  entropy s; the  ratio of specific  heats y; and the in- 
let  steady-state  relative Mach number 
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The  preceding  system of field  equations is nonlinear.  In this analysis they are   cast  
into a system of linear  equations with constant  coefficients by expanding each equation 
to first order in terms of the  amplitude of the  perturbed  variables. In the expansion 
process  the  zeroth-order  terms  are  treated  as  constants. The resulting  field  equations 
are 

where  the  tilda  denotes  a  time-dependent  variable  and  the bar signifies a steady-state 
variable. 

The present  analysis  assumes that there  are no sources of entropy o r  vorticity up- 
stream of the  cascade. The upstream,  unsteady  velocity  field  must  therefore  be  irro- 
tational and hence is equal to the  gradient of a  potential  function  where 

The unsteady  velocity field  downstream of the  cascade is expressed  as 

N a'00 NR u. =- + u .  i = l ,  2 
1, 1, O0 

where  azm/aXi represents  the  irrotational component of the  field and its rota- 
tational component. The  source of the  rotation  field is the  vorticity  shed by the  oscil- 
lating  airfoils. The  governing equation for this vorticity  field is derived  (ref. 10)  by 
taking the  curl of equation (6),  which yields 

3 + Ui,+ 
N aF 

at axi 
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A solution of equation (11) is sought  that is periodic  in  time  and  periodic  along  the cas- 
cade plane. This solution is given as 

where 

k + E  k 2 ,w  2 

k = 2 m  2 

(n is  an  integer) 

and E is a complex  constant. In reference 10 it is shown that 
vector  potential  associated with it. The  relation between these 

a vorticity field  has a 
two fields is given as 

v * = - g  2" N 

where V2 is the  Laplacian  operator. In addition it i s  shown that the  components of the 
rotational velocity field are 

N a* NR -=ul 

The particular solution of equation (17)  with the  right  side given by equation (16) is 

of 5; must be equal to Thus from  equations (17) and (18) the  components 

e ik2X2 ,ikt u =  "R Eik2 -iywX1 e 
l 2 2  

yw + k2 
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Solutions for the  remaining flow variables  are of the form 

N ik2X2 ,ikt 
s m = S e  e (25) 

N - * eik2x2 ,ikt 
P*m - P*m e 

where C*m, S ,  and p*m a re  complex constants.  Introducing  these  equations, 
along with equations (20) and (21), into  the  field  equations  yields 

A 

N (oL_, Xl+ik2X2+ikt) 
' -m=c  -m e 

N 
(-iymXl+ik2X2+ikt) 

sm = S e  
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N C ( amXl+ik2X2+ikt) 
P -  ik2)Cw e (33) 

where 

and 

RQ = 1 for XI < 0 

-2 

-2 
RQ =- 

q-00 

%, 

for XI > 0 

In deriving  these  results it was assumed  that  the  velocity  field  remained bounded at 
large  distances  from the cascade. 

The solutions  for  the unsteady flow variables  are functions of four complex con- 
stants.  These  constants are evaluated  in  the  next  section. 

Boundary Conditions 

The constants Cf,, S, and E that  appear  in  the  solutions  derived  in  the  preceding 
section a re  evaluated here  from  four boundary conditions at the deforming cascade 
plane. These boundary  conditions a re  derived by modeling  the oscillating  cascade as a 
deforming actuator  disk. 

The first boundary condition requires  the flow to be  continuous across the  deform- 
ing disk. The analytical  form of this boundary condition is 

where Un,*- represents  the  normal velocity  components relative to the  deforming 
disk.  These  velocity components to first order (i. e. , small  cascade-plane deflection) 
are equal to 

8 
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a;i: -00 aCl 

ax2 

URel _ -  aK1 - 
n, -00 - ul, -Qo u2, -03 

+"" 
at 

- 

Re1 - aZm as1 ..- 8x1 a* N 
un,OO = Ulym + - - - - 

axl at 
U2,m - + - ax2 ax2 (39) 

where is the  displacement of the  disk  from its mean  position in the axial (X1) direc- 
tion (fig. 4). The assumed  analytical  form for xl is 

N ik2X2 ,ikt 
h l = h  1 e 

where  hl is a real  constant. Substituting  equations (38) to (40) into equation (37) 
yields, to first order, 

and 

Introducing the expressions  derived  in the  preceding  section into equation (42) yields  the 
algebraic equation 

9 1  C -w + al2Co0 + a! 13 E + a14S = R 1 (4  3) 

where  the  constants a lly G~~~ a13, a14, and R1 are  defined in appendix B. 
The next boundary  condition requires  the total enthalpy with respect to the  deform- 

ing actuator disk to  be  locally  conserved  across  the  disk. The  equivalent  mathematical 
statement is 

where TAW is the  upstream and downstream  gas  temperature and e:' is the magni- 
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tude of the  relative  velocity  approaching and  leaving  the disk. The expressions  for 
C4R,"l are 

where g2 is the  local  displacement of the  cascade in the  tangential (X2) direction 
(fig. 4). The analytical  form  assumed  for  h2 is 

N 

N 

h = h  e ik2X2 ,ikt 2 2  (47 ) 

where h2 is the  complex  amplitude of the  displacement. Combining equations (45) 
and (46) with equation (44) and expanding to first order yield 

- 
T 

- 
T 

at X1 = 0 (48) 
y - 1 - 2  2 

-co "ca 

and 

The local,  total enthalpy change across the actuator disk as observed with respect 
to the X1,X2 coordinate  system is 
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N N 

N 

” 
Toy ”OO - = (T - T,) + if,, “Cd ” -w - 

ul, w 
Y - 1  -2 M y -  1-2 

“00 

-00 M“cd axl 

In deriving equation (50), variables  higher than first order have been neglected. Com- 
bining equation (50) with equation (49) yields 

Equation (51) shows that, if the steady  aerodynamic  force is a  finite  quantity, the con- 
tribution of these  forces to  the  total  enthalpy rise  across the  disk is a first-order quan- 
tity. Combining equation (51) with equation (C15) of appendix C produces  the  second 
boundary condition 

- aE‘ 
- U1, wz = -Too- - 

at ax2 

Substituting the solutions  for  the  field  variables into equation (52) yields 

The coefficients  in  this  equation are  defined in appendix B. 
The third boundary condition requires  that  the  local exit flow angle  relative to  the 

defoming actuator  disk be specified.  This angle is defined by the  equation 

- aZ a$ ar2 
U2,w+- ax, ---- ax, at 

tan p, = - . ”  

- 8% a 9  af;l 
ul, w ax,  ax2 at 

+-+- - -  

at x = o  1 (54) 
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Expanding the  right  and  left  sides of this equation to first order yields 
&* 

- U2,W 
- 

tan pm = at X1 = 0 
00 

(55) 

and 

(56) 

where  the  local,  perturbed exit flow angle Fw is defined as 

The present  analysis  assumes that  the local,  relative exit flow angle can be rela- 
ted to the local,  relative  inlet flow field (i. e. , flow properties  measured with respect 
to the  deforming disk) through a quasi-steady deviation-angle correlation of the form 

where Q is the  local,  relative incidence  angle, M,, is the  local,  relative  inlet Mach 
number, 0 is the  local  solidity of the  deformed  cascade,  and 8' is the  local  stagger 
angle measured  from  the  normal to  the leading-edge plane (fig. 4). The local,  relative 
incidence  angle is related to the  local,  relative  inlet flow angle p:, measured  from 
the normal to  the leading-edge plane by the equation 

The variable 6 in  this equation is the angle between the  chord  line and the  tangent 

to the camber  line at the  leading  edge.  The  corresponding  relation for the  local devia- 
tion angle is 

ml 

where P& is the  local,  relative  exit flow angle measured  from the  normal to the 
trailing-edge  plane  and 6 is the  angle between the  chord  line and the tangent to the 

"2 
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camber line at the  trailing edge. If the leading-edge plane of the cascade is deforming 
in time, the local inlet and exit  relative flow angles p-, and p, measured with re- 

spect to  the X1-axis deviate  from PI, and p: by the  angle tan-' 

small  displacements, p,, and p, are  

aK1 
P, = PL + - 

ax2 

Similarly  the angle 8 between  the chord  line and the axial  direction (fig. 4) is related 
to  the  local  stagger angle e t  by the equation 

Combining equations (58) to (63) produces the results 

Q = P-, - 8 - d m  
1 

and 

In the  present  analysis  the  variables in equation (66) that a re  a function of the  vibratory 
motion a re  p,, p,, M-, a, and ah,/aX2. Expanding equation (66) to first  order 
with respect to these  variables  yields 

N 
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and 

N 

The  local,  relative  inlet flow angle and the  local,  relative Mach number a re  de- 
fined by the equations 

N - a+ 8C2 
“03 

u 2 ,  -03 

U 1 ,  -, 

+”- 
ax2 at 

tan p,, = at XI = 0 
- aZ “m 8Kl 

+”- 
at 

Re1 
g-00 M =  

“m 
at X1 = 0 

Expanding  both these  equations to first  order  yields 
- 

tan p,, = -- - u2, -06 

U1,  “CO 
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where 

- 1 
M =  

From  figure 4, the local  solidity of the  deformed  cascade is 

(T= 

Expanding equation (76) to first order yields 

which for  small  interblade  phase  angles (I k2/NI << 1) becomes 

N (T= -3 ik e  (ik2X2+ikt) - 8g2 - 
2 2  

--- (T 

ax2 

(7 3) 

Introducing  equations (72), (74), and (78) into the  right  side of equation (68) and 
replacing  the  left  side with equation (56) produce  the third boundary condition 
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ai; - &2if+L - af;l at x1 = o 
aa  ax, a(:) (7 9) 

Introducing  the  solutions for  the  field  variables into this boundary  condition transforms 
it into the equation 

a31 -w 
C + a32Cm + a33E + a34S = R3 (80) 

where the coefficients of the  complex  constants are defined in appendix B. 
The last boundary conditicn  specifies  the  local  entropy  that is generated as the 

fluid passes through  the cascade.  The  loss  associated with the  local entropy rise is de- 
fined in  terms of a loss coefficient defined as 

Re1  Re1 
Po, "00 - Po,, 

Y =  

The variable Po, -, in this equation represents the  local  total-pressure  loss 
measured  relative to the deforming  actuator  disk.  The  entropy rise across the  disk is 
related to this quantity by the  equation of state 

Re 1 
- 
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Re1  Re1 - Re1 (- [yM-~'m) -2 
-00 - P0,m - Po, -00 

Combining equation (81) with equation (82)  and solving for sW yield 

The present  analysis  assumes that the  local loss coefficient x is related to the 
local  inlet flow field, as observed with respect  to  the  deforming  disk, by a  quasi-steady 
relation of the form 

The dependent variables  in  this equation are  identical to those  that  appeared  in equa- 
tion (58). Introducing  equation (84) into  equation (83) and expanding the  resulting ex- 
pression  to first order yield 

and 

"2 

e 
-2 

-Re1 
-00 - 
-QJ 

1 
2 

at X1 = 0 (s 6) 

where Po is the  local,  perturbed inlet total  pressure  measured  relative to the  de- 
forming  disk. This variable may be related to the local, perturbed inlet pressure F-OO 
and the  local,  perturbed inlet Mach number $-m by expanding the definition of Po 

Y -O0 

9 -00 

1 + Y "  1 2, Re1 7"h"Y1) 
po,-m - p-00 ( -00 ) - 

to first order: 
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The remaining  perturbed quantity in equation (86) is equal to 

-2 
2Y"00 

c 

J 

Substituting  the  solution for the flow variables into this last boundary condition re- 
duces it  to 
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a41c-03 + C V ~ ~ C ~  + a43 E + CY 44 S = R 4 

where  the  coefficients a!42, a43, a!44, and R4 are  defined in appendix B. 

tem of nonlinear algebraic equations for  the  steady flow fields and four linear alge- 
braic equations for  the  complex  constants C*m , E, and S. The steady flow equations 
are  used  to  relate the steady  downstream flow variables to the  cascade  geometry  and 
the steady  inlet flow properties.  These  relations are incorporated into  the algebraic 
equation for C,m, E, and S and render  them independent of the  downstream  steady 
flow properties. The solutions for ChW, E, and S are combined with equations (19), 
(29), (30), and (31) and a re  used  in  the next section to calculate  the unsteady  aerody- 
namic force  acting on the  cascade. 

The four boundary conditions  applied  in  the present  analysis have  produced a sys- 

Aerodynamic Force 

The aerodynamic force  acting on a  deforming  cascade is obtained by considering 
the flow field  through  a control volume that is fixed to a cascade  passage (fig. 3). The 
present  analysis  assumes  that  the  relative motion between neighboring airfoils, a  mea- 
sure of which is the  interblade  phase  angle, is small and that  the  reduced  frequency of 
this motion is also  small. The first assumption  implies  that  the  spatial  variations of 
the flow variables  across a cascade  passage are  small and  thus  can be neglected. The 
low-frequency assumption  suggests that the  rate of change of mass and momentum with- 
in  the  control  volume is smaller than  the  net mass and momentum flux across  the con- 
trol volume surface and thus  can  also be neglected  in  the present  analysis. Based on 
these  considerations  the momentum equation for  the  control volume illustrated in fig- 
ure 3 can be written as 

F. = (p - p-,)ni7 + W vi,, - U. ) 
Re1 

1 03 1, -m (9 3) 

where Fi is the force  exerted by the  airfoils on the  control volume, T is the  pitch of 
the  cascade, WRel is the mass flow exiting  the  control volume, and nl is the  unit  vec- 
tor normal  to  the exit plane of the  control volume. Expanding equation (93) to first or- 
der  yields 

and 
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- 
Ui, "o3 ) - c  i, "00 ) (9 5 )  

The mass flow exiting  the  control volume is 

which,  expanded to first order, becomes 

- 
" " 

W = p,7Ui, mni (97 1 

For the  airfoil  displacements under consideration in this  analysis,  the components of 
the  unit vector ni are 

Expanding  both of these equations to first order  yields 

- 
nl = 1 

n2 = 0 
- 
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nl = 0 
N 7 

ahl 
n2 =-- 

- 
N 

In addition if equations (101) and (102) are introduced into equation (95), the components 
of the unsteady aerodynamic  force become 

The work done by the  aerodynamic  force on an  airfoil  over a cycle of motion is 
equal to 

where Re [ ] denotes  the real  part of the  expression and the asterisk  superscript signi- 
fies  the complex  conjugate of the variable.  Inserting equations (40) and (47) into equa- 
tion (107) and evaluating  the  integral  yield 



where .%H [ ] represents  the  imaginary  part of the  expression within the  brackets  in equa- 
tion (107). At the  onset of flutter  the  aerodynamic work per  cycle is equal to the  mechani- 
cal  energy  dissipated  over a cycle. If the  mechanical dissipative  force is proportional to 
the  velocity of the  airfoil,  the mechanical  energy dissipated  over a cycle of motion is 

L 

where the damping  coefficient C is defined as 

27r d 

a;: 
-+ 
at 

The variable 6 in  this equation is the  log decrement of the mechanical damping, and 
Mb is the mass  per unit length of a rotor blade. This  variable  is defined as 

Mb = K P ~ T C  (1 11) 

where K is a  constant of proportionality, pb is the  blade  density, T is the average 
thickness of the  blade,  and  c is its average  chord length.  Introducing this equation 
along with equation (110) into the  integrated  form of equation (109) yields 

Equating equation (112) with equation (108) and solving  for 6 establishes  the minimum 
level of mechanical  damping required  for  stability  at  an  operating point as 

The symbol Mink denotes  the minimum value of the function with respect to kg. If 

the available  mechanical damping of a rotor blade  exceeds  this  critical  level, any small 
bending  motion imparted to the blade will decay  in  time. Hence the  system  is  stable 
and flutter will not occur. However, if rSOnset is  greater than  the  available mechani- 

2 
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cal damping of a rotor blade, any small beading motion imparted  to  the  blade will cause 
the  blade to  flutter. 

In the next section  the  present  analysis is used  to  predict  the  flutter  boundaries of 
four high-speed fan rotors. The results  are compared with the  measured  flutter boun- 
daries  to  establish  the  validity of the  analysis. 

RESULTS 

For the  flutter mode under  study the amplitude of the motion increases monotoni- 
cally along the blade span  from  the node line. For blades  that a re  rigidly fixed at  their 
root (i. e. , mechanically  constrained), the node line  can be assumed  to  lie outboard of 
the blade platform (i. e.  , outboard of the  aerodynamic hub of the  blade). The  node line 
of the first flexural mode of the  rotors  to be  investigated later in this  section is approx- 
imately 20 percent of span height  outboard of the platform.  Thus, the vibratory motion 
of the  blades  in  these rotors  at any spanwise section is 

h = -[ sin 8' - (20%) 
1 

h2 = 5 cos 8' - (20%) 

where 5 is the  amplitude of the motion a t  the  section and - 8' (20%) is the  stagger angle 
at  20 percent of span. 

The aerodynamic  work per unit of span a t  a given radial  location depends on the 
amplitude of the motion of the  section and  the relative dynamic pressure of the incom- 
ing streamliale  to  the  section.  Thus  because both increase with distance  from  the hub, 
the  total work done by the  airstream on a blade is strongly influenced by the  unsteady 
flow field  surrounding  the  tip  region. A simple  calculation shows that this influence 
encompasses  the  outer 25 percent of the  span. If the  outer-casing boundary layer  were 
assumed to  influence  the flow field  over 5 percent of the  tip  region of a  blade,  a direct 
correlation might exist between the  flutter boundary of a rotor and a two-dimensional 
cascade whose geometry  and  dynamic  response  coincide with that of the rctor  at 85  per- 
cent of span (i. e.,  algebraic  means of 75 and 95 percent of span). The results  presented 
in the  remainder of this section a re  based on this  premise. 

The objective of the first series of calculations is to establish the  influence of re- 
duced frequency kb and interblade  phase angle on the  aeroelastic  stability of a cascade 
of airfoils. For this  study a normalized damping parameter defined as  
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is calculated as a function of kb and the  interblade  phase  angle.  The  parameter 

PO, Amb 
dinate system.  For dN greater than zero  the  airstream is supplying energy  to the 
cascade. If the  mechanical damping of the  cascade  system is zero, the  operating 
condition would be unstable.  For  values of dN less than zero the cascade is do- 
ing work on the airstream, and hence the  system is stable. 

in this equation is the  inlet  stagnation  density  measured in the  absolute  coor- 

Solving equation (116) requires as input information  the  steady-state  inlet flow 
properties,  the  geometry of the cascade, and the  frequency of oscillation. A set  of 
loss and deviation-angle correlations  must  also be specified. The present  analysis 
makes  use of the correlations  derived  in appendix C. The  steady-state  inlet flow 
conditions a re  derived  from  the blade-element  data, measured  at 85 percent of de- 
sign  speed, of the  second  stage of the NASA 1450-ft/sec-tip-speed two-stage fan. 
(This rotor is analyzed  in greater detail later in this section.  This blade-element 
data set is reported  in  reference 6. The cascade  geometry  represents  the geom- 
etry of the  second-stage rotor element at 85 percent of span height from the hub. 

Figure 5 shows a plot of 6N as a function of interblade  phase  angle and re- 
duced frequency kb for the NASA fan operating at the  flutter boundary at 85 per- 
cent of design  speed.  This  figure  shows  that  the bending flutter mode is asso- 
ciated with a positive  interblade  phase  angle (i. e. , implies  that  the  vibration pat- 
tern is traveling  around  the  rotor  in the direction of rotation). The figure  also 
shows that  increasing  the reduced  frequency  stabilizes  the motion at a constant in- 
terblade  phase angle. 

Figure 6 shows a plot of 6N as a function of interblade  phase angle and per- 
centage of design weight flow along  the  85-percent-speed line. For a given inter- 
blade phase  angle, decreasing  the weight  flow at constant wheel speed  (i.e. , in- 
creasing the  steady-state  aerodynamic loading) tends to destabilize  the  rotor. 

From  the  results shown in  figures 5 and 6 the  present  analysis  seems  to  pre- 
dict  that 6N increases monotonically with interblade  phase  angle  over  the  range 
shown.  Hence, unless  some additional  information is supplied that  establishes  the 
interblade  phase  angle at the onset of flutter,  the  analysis  in its present  form can- 
not be used to predict  supersonic stall bending flutter. In attempting  to  solve this 
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problem it was observed  that  the  variable k2 (and hence  the interblade  phase 
angle)  appeared  in several of the terms in  the  analysis (e. g., eq. (77)) as  a result 
of expanding the quantity 

N(e - 1) 
ikZ/N 

to first order  in k2/N. It might  expected that  replacing is2 in the  analy- 

sis with the  imaginary  part of N 

r 1 

would give a more  physically  realistic  behavior  for  large  values of k2. This modifica- 
tion was  introduced  into all  the  expressions containing k2 except  the exponential factor 

ik-X, 
e ' '. The results obtained from  this  altered  analysis a r e  shown in figure 7 .  For 
1 uI 4 45O, the  modified analysis  yields  results that a re  comparable  to  those  obtained 
from  the  original  formulation. In addition the modified analysis  predicts a finite maxi- 
mum for bN. 

set of supersonic stall bending flutter  can be established by showing that,  for a given 
rotor,  flutter will generally  be  observed whenever the  predicted maximum value of bN 
exceeds  the  normalized  structural damping of the rotor. For this  demonstration,  four 
high-speed fan stages  were  investigated. The level of structural (i. e., log  decrement) 
damping (assumed to  be  a  constant for  each  rotor) to be used  in  this study had to be es- 
timated  from  experimental  flutter  data.  The first rotor t~ be analyzed in  this study is 
the  second stage of the NASA 1450-ft/sec two-stage fan.  The performance map for  this 
fan is shown in  figure  8. The  second stage  exhibits two zones of bending flutter, both of 
which are  shown in figure 8. The first flutter zone occurs  at  part  speed and lies close 
to the fan stall line. The  second zone occurs  at  operating  speeds  in  excess of design 
speed.  Because this second  flutter zone appears to be  associated with a choked passage 
flow, it will not be analyzed  in  this study. 

The maximum value of the  normalized  aerodynamic damping 6N (denoted herein by 
the symbol 6N, max ) a s  a  function of weight flow and wheel speed  for  the  second-stage 
fan is shown in  figure 9. The  operating point at 85 percent of design  speed at which flut- 
ter occurred is denoted by the  solid symbol. (Open symbols  denote  stable  operating con- 
ditions.) If the  level of mechanical damping in the system  were equal to  the  aerody- 

The validity of the modified analysis as a correlation  system  for  predicting  the on- 
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namic damping at  this  operating point, the altered  analysis would predict  that  all  the re- 
maining operating points a re  stable, including  the stall points at 75 and 95 percent of de- 
sign speed. This result is supported by experimental results. An attempt  was made to 
shift the  flutter  boundaries of this fan  out of its stable  operating  range by closing  the 
first-stage  stator  blades.  This  reduced  the magnitude of the relative velocity entering 
the  second stage  and  increased  the  relative incidence  angle to the  stage. Reducing the 
velocity raised  the  reduced frequency and, from  previous  results, is a stabilizing factor. 
However, increasing  the incidence  angle increased  the  aerodynamic loading on the rotor 
and from  previous  calculations, is a destabilizing  factor. 

The computed results  for SN,  ma^ a t  the two operating points (80 and 85 percent of 
design wheel speed) at which blade-element  aerodynamic  data  were  recorded are  shown 
in figure 10. For a  value of mechanical  damping estimated  from the results  presented 
in  figure 9, the analysis  predicts  that  the modified  design would experience bending flut- 
ter   at  these two operating  points.  Figure 11 shows the  predicted  flutter boundary for the 
modified fan superimposed on its performance  map. The experimental  flutter boundary 
is also  indicated  in  this  figure. Comparing the  results  presented  in  figure 11 with those 
presented in figure 9 shows that  the  analysis  predicts  ashift in the  flutter boundary of 
the  second stage a s  a result of the configuration  change.  The  predicted shift of the 
boundary is consistent with the  experimental  data; however, the extent of the flutter re- 
gion is overestimated by the  correlation. 

The present  analysis  can be used  to  study the  effect of the  steady,  inviscid  aerody- 
namic  force on the  supersonic stall flutter boundary. For  example,  reference 9 has 
shown that at low speeds the steady,  inviscid  aerodynamic  force  can induce bending 
flutter. In the  present  study, the aerodynamic  damping  was  calculated as a function of 
interblade  phase  angle, and the  effect of loss and deviation-angle variations was neglec- 
ted.  This  calculation  was  performed with, as  input data,  the rotor geometry and the 
aerodynamic inlet conditions at  the  predicted  flutter point of the NASA two-stage fan. 
The results of this  calculation a re  shown in figure 12, along with the results  from  fig- 
ure 7 , which include the effects of the  viscous forces. (The range  over which the re- 
sults were  calculated was  chosen  to be of sufficient width to include  the interblade  phase 
angles  measured at  the  onset of flutter  reported  in ref. 8 .) This  figure  clearly shows 
that the  steady,  inviscid  forces  in  themselves a re  not the  primary  destabilizing  force  at 
high speeds.  Rather it appears  that  supersonic stall bending flutter is induced by the 
viscous  forces  associated with a rapid  rise in the tip blade-element loss coefficient. 

The  present  analysis was also  correlated and verified with the  flutter  data obtained 
from  fan C of the NASA Quiet Engine Program  (ref. 6),  the NASA 50-50 fan stage, and 
a prototype  fan rotor developed in  industry. The performance map for fan C (fig. 13) 
shows two flutter  instability  zones.  The first zone is torsional  flutter  that  occurs  at 
part speed  and lies  close to the stall  line.  Just above this zone lies a zone of bending 
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flutter  that  appears  to extend past 95 percent of design  speed. Only the bending flutter 
mode of this  rotor is analyzed in this  report. The maximum value of the  calculated, 
normalized damping as a function of weight flow and wheel speed  for  fan C is shown in 
figure 14.  The operating points at which flutter  occurred  are  indicated by the  solid 
symbols. (Open symbols denote measured  stable  operating  conditioss . ) The  level of 
mechanical damping for  this rotor system is assumed to equal the minimum value  of 
the  aerodynamic  damping  computed  at  the  operating  point  where  flutter  was  encountered. 
This  level of damping was  used  to  calculate  the  stability boundary in f igure 14. All op- 
erating points that lie above this boundary a re  assumed  to  be  unstable, and those  that 
lie below a re  assumed  to  be  stable. The majority of the  measured  stable  operating 
points lie below the  estimated  stability boundary. The results of transforming  this 
boundary onto the  performance map is shown in figure  15.  The  solid  symbols in this 
figure denote measured  flutter  points.  This  figure shows that  the  present model yields 
results that a r e  consistent with measured  experimental  data. 

The rotor of the NASA 50-50 fan  stage  encountered  su-personic bending flutter a t  
100 percent of design wheel speed at reduced inlet pressure (1/2 atm). At standard 
inlet conditions (1 atmj the flutter zone intersected  the stall boundary at  90 percent of 
design wheel speed. Both boundaries a re  shown  on the rotor  performance map of fig- 
ure 16. The magnitude of the maximum normalized damping along  the 100- and 
90-percent-speed lines  for  this rotor is shown in figure 17. The  experimental  flutter 
point a t  reduced  inlet  conditions is indicated  in  the  figure by the  solid  symbol.  This 
point is assumed  to define  the  mechanical damping level of the  rotor  system. Fig- 
ure 17 shows that  the  analysis  predicts  that  all  the  stable  operating points at reduced 
inlet conditions lie below the  stability boundary. 

For a  constant  inlet-total-temperature  operating condition the  present  analysis 
predicts  that  the  aerodynamic damping acting on the NASA 50-50 fan stage will in- 
crease  linearly with inlet total pressure. Thus if  the  mechanical damping of this rotor 
system  were independent of the inlet total pressure,  the  predicted  flutter zone on the 
perfcrmance map of this fan would increase  as the  inlet  pressure was raised. In fig- 
ure 18 the  predicted  flutter boundary for  the NASA  50-50 fan stage  at an inlet  pressure 
of 1 atmosphere is superimposed on its performance  map. Also shown in  this  figure 
is the  measured  flutter boundary at  that  inlet pressure. Comparing these two sets of 
results with the  measured  flutter boundary at  1/2-atmosphere inlet pressure shown in 
figure 16 suggests  that  the  present  analysis  overestimates  the  destabilizing influence 
of higher  inlet  pressure on this fan stage. 

A prototype  fan rotor developed in  industry  was  also  run a t  two levels of inlet 
pressure. The flutter  boundaries  for this fan a re  shown  on its performance map  in 
figure 19. The  maximum normalized damping for  this fan is shown as a function of 
weight flow  and wheel speed in figure 20. The experimental  flutter point for this fan 
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is denoted by the  solid symbol. This point is used to define  the stability boundary at  
atmospheric  inlet  conditions. Once again, the  analysis  predicts  that all the  measured 
stable  operating  points of this fan lie below this boundary. 

For a level of mechanical damping in  the rotor system  estimated  from the results 
shown in  figure 20, the  analysis was  used to establish  the  flutter boundary at a raised 
inlet  pressure of 2 atmospheres. The predicted boundary and the  measured  flutter 
boundary at  this higher pressure are shown on the  performance  map  in  figure 21. The 
measured  flutter boundary intersects  the stall line at 81  percent of design wheel speed; 
the  predicted  flutter boundary intersects  the stall line at 71  percent of design wheel 
speed. As in  the  previous  study,  the  analysis  slightly  overestimated  the  destabilizing 
influence of raised  inlet  pressure on the  flutter boundary of a  fan stage. 

The present  analysis  has been  used with good success  to  predict  the bending flut- 
ter boundaries of four  transonic  compressor  rotors.  These  boundaries  were  calcu- 
lated  from  empirically  derived  estimates  for  the  mechanical damping level  in  each 
rotor. The material damping level (i. e., log  decrement) of a compressor  rotor blade 
was reported in reference 4 to lie between 0.008  and 0.02. For the NASA two-stage 
fan  the estimated damping level of 0.0126 lies within the  material damping range re- 
ported in reference 4. This  was expected since  this rotor was designed for  rig  testing 
and thus  was of fairly  rigid and massive  construction. For the  remaining  rotors  the 
estimated  levels of damping used  in  calculating  their  flutter  boundaries  were 0.0246 
for fan C, 0.0298 for  the NASA 50-50 fan  stage,  and 0.0218 for  the  prototype fan 
stage.  These  levels of damping are  greater than the  level of material damping re- 
ported  in  reference 4. The greater  overall damping levels  in  these  rotors  are  attribu- 
ted to their  greater flexibility (i. e.,  these rotors were  assembled  from engine  flight 
hardware).  This  flexibility could allow the  various components of the rotor assembly 
to rub  against one another  during a  cycle of motion. This rubbing motion would re- 
sult  in  friction damping, which - added to  the  material damping of these  rotors - would 
yield  a total damping level greater than that  in  comparable  rig rotor assemblies. Thus 
in  using  the  present  analysis as a correlation  for  predicting  the  onset of supersonic stall 
bending flutter of a compressor  stage, a damping level of about 0.0125 should be used if 
the rotor assembly is fairly  rigid. However, if the rotor  assembly is fairly  flexible, 
such  that  during  a flutter  cycle  the components of the  assembly might be in relative mo- 
tion,  a damping level of about 0.025 should be assumed. 

CONCLUDING REMARKS 

In the present investigation  an  analytical model was developed to predict  the  onset 
of supersonic stall bending flutter in high-speed rotors.  This model was based on the 

28 



assumption  that there is a direct  correlation between the  onset of bending flutter  in a 
rotor and the  onset of bending flutter in a two-dimensional cascade whose geometry, 
dynamic response, and aerodynamic  performance  coincide with the  rotor  blade-element 
section at  85  percent of span  height measured  from  the hub. The two-dimensional cas- 
cade of airfoils was considered a s  an  actuator  disk  that was allowed to  deform  in  time. 
The effects of shock  waves  and viscous  forces  were introduced into the model through 
rotor blade-element total-pressure-loss and deviation-angle correlations. The infor- 
mation input to the  analysis is the  steady  aerodynamic  inlet flow conditions to  the rotor 
blade-element section at  85  percent of span  height,  the rotor geometry,  and  the  rotor's 
dynamic response.  In addition,  aerodynamic  design  information  must  be  specified, 
along with a value for  the  structural damping in the  rotor  assembly. 

To verify  the  analysis, computed flutter  boundaries of four high-speed  fan stages 
that  experienced  supersonic stall flutter  were  compared with their  measured bounda- 
ries. These  four  rotors  covered a range of design parameters typical of present and 
advanced fan designs. For this  verification study the  structural damping level had to 
be deduced from  the  experimental  flutter  data. 

The stability  boundaries  predicted by the  analysis  were  in good agreement with the 
experimental  results. Any difference  that  didexist showed the  analysis to slightly  over- 
estimate  the  extent of the  flutter  region. Although no specific  reason  for this apparent 
conservatism is obvious, several  possible  reasons  are ( l)  the  assumed  structural 
damping model, (2) the  use of rotor blade-element  quasi-steady loss and deviation- 
angle correlations, (3) three-dimensional  aeroelastic  effects, and (4) the  assumed  form 
for the  interblade-phase-angle dependency used  in  the model.  Finally the validation 
studies  clearly showed that  the  primary  destabilizing  forces  in  supersonic  stall bending 
flutter  are the  viscous  forces  associated with a rapid rise in  the  tip  blade-element, 
total-pressure-loss  coefficient. 

Additional experimental  data a re  needed to improve  the  present  correlation between 
the  measured and predicted flutter boundaries of a  fan stage and to  broaden  the  general 
applicability of the model. In particular,  experimental  measurements  are needed  to 
establish  the influence of rotor geometry, weight flow, and wheel speed on the  flutter 
boundary and  the  interblade  phase  angle a t  the  onset of flutter.  In addition,  a compre- 
hensive  analytical  and  experimental  program is needed to  establish  the  mechanism and 
level of structural damping in a rotor  assembly. 

Lewis Research  Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 9, 1978, 
510-55. 
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APPENDIX A 

SYMBOLS 

b 

cP 

c*co 
C 

d 

E 

Fi 
h 

hl 

h2 

airfoil  semichord 

specific  heat at  constant  pressure 

complex constant 

average blade chord and damping coefficient 

circumferential  distance  around wheel 

complex  constant 

aerodynamic force 

enthalpy 

axial  displacement of an  airfoil 

tangential  displacement of an airfoil 

K 

k 

kb 

k2 
M 

m 

l”b 
N 

n 

P 

q 

R 

RQ 

Ri 
S 

constant 

reduced  frequency  based on circumferential  distance, od/q-co 

reduced  frequency  based on semichord, ob/q-co 

wave number of disturbance along cascade plane 

Mach number 

defined by eq. (C2) 

mass of a rotor blade per unit length 

number of blades  in rotor 

integer 

unit vector 

pressure 

magnitude of velocity  field 

radial  distance 

defined by eq, (36) 

complex  constant 

complex constant 
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UR 

WAero 

wD 
W 

xi 
CY 

@*Ca 
CY.. 
9 

P 

Y 

6 

6 

6 
"1 

m2 

5 

e 

5 

P 

X 
J! 

w 

entropy 

temperature 

total temperature 

time 

velocity  components 

rotational  velocity 

aerodynamic work per  cycle of motion 

energy  dissipated  per  cycle of motion by mechanical  damping 

mass flow rate 

spacial  coordinates 

incidence  angle 

complex wave number  in axial direction 

complex constants 

flow angle 

ratio of specific  heats; axial wave number 

log  decrement; deviation  angle,  eq. (37) 

metal  angle at leading  edge 

metal  angle at  trailing edge 

vorticity 

stagger  angle 

amplitude of blade  motion 

density 

solidity 

cascade pitch or average  thickness of a rotor blade 

velocity  potential 

total-pressure-loss  coefficient 

vector  potential 

frequency of oscillation 
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r 

Subscript: 

f03 upstream o r  downstream  variable 

Superscripts : 

(-) steady-state  variable 

(-) time-dependent variable 

* complex  conjugate 

Re1 relative component 
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APPENDIX B 

PERTURBATION  COEFFICIENTS 

- -2 - 
a11 - cy03 - “,U1, “00 (ik + 1, -03 a-03 + u 2 ,  -03 

- 

a22 = k2k 

a24 = Tmik2 
- 
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= 0 

+ h  

= 0 
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= 0 

cY44 = 0 
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APPENDIX C 

TOTAL-TEMPERATURE  RISE  ACROSS A DEFORMING  ACTUATOR  DISK 

In  this appendix an equation is derived  that  relates  the  total-temperature rise 
across the  deforming  actuator disk to the  upstream  potential  field and the  downstream 
potential,  vorticity,  and  entropy fields. The  thermodynamic  variables on each  side of 
the disk satisfy  the equation 

T d S = d h - -  dP 
P 

where  h is the enthalpy of the  gas  stream. Since equation (Cl) is a relation  for  the 
incremental change of state of the  gas, it may also be  written as  

Introducing equation (C2) into Euler's equation of motion 

au . 
x J axj p axi 

1 + u . - = " -  1 8~ 

yields 

aui au* ah 
-+ I J .>=- -+T-  as i = l ,  2 
at - J  axj axi axi 

Substituting  the relation 

into equation (B4) produces  the  result 

For an ideal gas 
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This equation is often referred  to as the Crooco-Vazonyi equation.  The X2 compo- 
nent of equation (C8) for  the flow field  upstream of the  actuator  disk (in nondimensional 
form)  reduces  to 

at 

since 

and 

Similarly  the  relation  for  the flow field downstream of the deforming  disk (in nondimen- 
sional  form) is 

where 

Thus  the  difference in total temperature  across  the disk is equal to 
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which,  when expanded to first order,  becomes 

1 1 "- = -; p 2 , -  - 
y - 1 L ax2 

"ca 
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APPENDIX D 

DEVIATION-ANGLE AND LOSS CORRELATION 

The  deviation-angle correlation applied  in the  present  analysis is based on a modi- 
fied  Carter's  rule 

where cp is the  camber  angle of the blade cross section  in  radians and aD is the in- 
cidence  angle at the  design point in  radians.  The  variable rS0 is the  reference devia- 
tion  angle for  zero  camber.  This  variable is assumed here  to be a  constant and is 
equal to  the  difference between the deviation  angle at  the  design point  and the  deviation 
angle  calculated  from Carter's  rule. The  remaining  variable  m for a  circular-arc 
airfoil is plotted a s  a  function of stagger angle  in reference 12 (p. 211). This  graph is 
well  approximated by the  expression 

m = 0.216 + 0.05013 8' + 0.08617 (D2) 

where 8' is expressed in radians. 
In the neighborhood of the  design point the  deviation angle for a tip section of a f a t  

rotor is generally  observed to be independent of incidence  angle and  Mach number; 
thus 

In addition the  rate of change of the  deviation  angle with  incidence away from  the  design 
point is generally  observed to increase  as  the Mach number is increased.  Eased on 
these  observations  the  expression 
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4 .86  + ll.O(M-a 
r =  

4 . 4 5  - 7.0(M-.0 - 

( W  

was derived  from a number of high-speed fan  stages  tested at NASA Lewis. The  data 
used in deriving this  correlation  were  recorded at; approximately 85 percent of span 
height (measured  from  the hub). The  rotor-blade cross  sections were multiple  circu- 
lar arcs designed for high-speed operation  (tip Mach number, -1.4). The tip  solidity 
of these  rotors  varied  from 1 . 3  to 1 . 7 .  

From equation (60) of the  main text and the definition 

the quantity (Y - a0 can  be shown to be 

Incorporating  equation (D8) into  equation (D6) and introducing  the  result, along with 
equation (D2), into equation (Dl) yield  the deviation-angle correlation used in this 
analysis. 

The  total-pressure-loss  correlation is derived  from a graph of experimental data 
presented in reference 11 (p. 248). This  correlation is expressed  as 

where D represents  the flow diffusion through  a  blade  passage. For a two- 
dimensional  compressible flow, D is defined as 
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An analytical  expression  for f(D) was  derived by fitting  a  quadratic equation to the 
correlated  experimental  data of reference 11, measured  at 85 percent of span  height. 
The result is 

f(D) = 0.03045 - 0.206 D + 0.48175 D 2 
( D W  

Introducing  equations (D11) and (DlZ) into equation (D10) produces an expression for the 
loss coefficient x in terms of inlet and exit flow angles,  inlet and exit Mach numbers, 
and solidity.  This  expression, along  with the deviation-angle correlation and the 
steady flow equations  (eqs. (37), (e), (51), and (80) ) ,  forms a system of nonlinear 
algebraic  equations  whose  solution  yields  the  exit Mach number and exit flow angle as 
a function of inlet flow angle and  Mach number,  blade-section  geometry, and design 
inlet and exit flow angles.  From  this solution the  loss  coefficient, as well as  all  the 
partial  derivatives  that  appear in  equations (73) and (86), can be calculated. 
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Figure 1. - Compressor  performance  and  stability map. 
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Figure 2. -Typical  tip  rotor  static-pressure  distribution  near  supersonic  stall  flutter  boundary. 
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Figure 3. - Cascade plane  deformation. 
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Figure 5. - Calculated,  normalized  damping as  a function of  interblade  phase  angle  and  reduced  frequency for NASA 
two-stage fan. 
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Figure 7. - Original  and  modified  analyses  for NASA two-stage fan  at 85 percent of design  wheel speed and 
75.68 percent of design  weight flow. 
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modified NASA two-stage fan. 
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